83 research outputs found

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads

    To Index or Not to Index: Optimizing Exact Maximum Inner Product Search

    Full text link
    Exact Maximum Inner Product Search (MIPS) is an important task that is widely pertinent to recommender systems and high-dimensional similarity search. The brute-force approach to solving exact MIPS is computationally expensive, thus spurring recent development of novel indexes and pruning techniques for this task. In this paper, we show that a hardware-efficient brute-force approach, blocked matrix multiply (BMM), can outperform the state-of-the-art MIPS solvers by over an order of magnitude, for some -- but not all -- inputs. In this paper, we also present a novel MIPS solution, MAXIMUS, that takes advantage of hardware efficiency and pruning of the search space. Like BMM, MAXIMUS is faster than other solvers by up to an order of magnitude, but again only for some inputs. Since no single solution offers the best runtime performance for all inputs, we introduce a new data-dependent optimizer, OPTIMUS, that selects online with minimal overhead the best MIPS solver for a given input. Together, OPTIMUS and MAXIMUS outperform state-of-the-art MIPS solvers by 3.2×\times on average, and up to 10.9×\times, on widely studied MIPS datasets.Comment: 12 pages, 8 figures, 2 table
    • …
    corecore